Multimaterial Fibers
نویسندگان
چکیده
Recent progress in combining multiple materials with disparate optical, electronic, and thermomechanical properties monolithically in the same fiber drawn from a preform is paving the way to a new generation of multimaterial fibers endowed with unique functionalities delivered at optical fiber length scales and costs. A wide range of unique devices have been developed to date in fiber form-factor using this strategy, such as transversely emitting fiber lasers, fibers that detect light, heat, or sound impinging on their external surfaces, and fibers containing crystalline semiconductor cores. Incorporating such fibers in future fabrics will lead to textiles with sophisticated functionality. Additionally, long-standing issues in traditional applications of optical fibers have been addressed by multimaterial fibers, such as photonic bandgap guidance in hollow-core all-solid-cladding fibers and imparting mechanical robustness to soft-glass mid-infrared fibers. We review recent progress in this nascent but rapidly growing field and highlight areas where growth is anticipated. Furthermore, the insights emerging from this research are pointing to new ways that the fiber drawing process itself may be leveraged as a fabrication methodology. In particular, we describe recent efforts directed at appropriating multimaterial-fiber drawing for chemical synthesis and the fabrication of nanostructures such as nanowire arrays and structured nanoparticles.
منابع مشابه
Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission.
We describe an approach for producing robust multimaterial chalcogenide glass fibers for mid-wave and long-wave mid-infrared transmission. By combining the traditional rod-in-tube process with multimaterial coextrusion, we prepare a hybrid glass-polymer preform that is drawn continuously into a robust step-index fiber with a built-in, thermally compatible polymer jacket. Using tellurium-based c...
متن کاملMultimaterial preform coextrusion for robust chalcogenide optical fibers and tapers.
The development of robust infrared fibers is crucial for harnessing the capabilities of new mid-infrared lasers. We present a novel approach to the fabrication of chalcogenide glass fiber preforms: one-step multimaterial extrusion. The preform consists of a glass core and cladding surrounded by a built-in, thermally compatible, polymer jacket for mechanical support. Using this approach we extru...
متن کاملOptical and electrical characterizations of multifunctional silver phosphate glass and polymer-based optical fibers
In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index op...
متن کاملRobust multimaterial chalcogenide fibers produced by a hybrid fiber-fabrication process
Double-crucible cane fabrication of highly purified chalcogenide-glass was combined with multimaterial thermal fiber drawing to produce robust low-loss 0.2 NA chalcogenide fibers. Optical transmission losses were shown to be less than 1.1 dB/m at wavelengths of 1.5, 2.0 and 4.6 μm. Fiber transmission > 97% at the 1.5 μm design wavelength was demonstrated using single-layer anti-reflection coati...
متن کاملNonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation
Wepresent the results of an investigation of the nonlinear characteristics of a new class of robust,multimaterial, allsolid chalcogenide nanotapers prepared from high-index-contrast chalcogenide fibers. The fiber is drawn from a preform produced bymultimaterial coextrusion and consists of chalcogenide core and cladding (which dictate the optical properties) and a built-in thermally compatible p...
متن کامل